Author: REsurety

Employee Spotlight on Jennifer Newman, VP of Atmospheric Science Research

“I found anecdotally that a lot of meteorologists also play instruments.”

Jennifer Newman, Vice President, Atmospheric Science, REsurety, standing in front of a wind turbine.

“I grew up in the Boston area, and my dad was a sportswriter and my mom works in medical book publishing. So not really all that science-related. But I’ve always loved blizzards and snowstorms and thunderstorms. I still absolutely love snow. Growing up in New England, we definitely got a wide variety of weather. I was always fascinated by all of it and loved being out in it. 

“I have a younger brother who’s a software developer out in L.A. Sometimes we chat about agile development and things like that. We have this common vernacular now.

“Back then I took dance classes, I was in chorus, I played clarinet in the band, I acted. I was into the humanities, but I had this inclination for science and math. Everything appealed to me, so I went in as an undeclared major at Cornell University

“One draw for Cornell was its marching band. I did marching band throughout high school and all four years in college. I played the clarinet. We did every home and away game, and we also did a couple NFL games, and a Canadian Football League game. Rehearsals were three times a week. One of them was Tuesdays until 11 pm, which now I can’t imagine!

“Someone in the band was in the Meteorology Department, and he became known as the band meteorologist. I had never really found an outlet for all the math and physics, but once I saw, you can apply it to something that I really loved – the weather – that’s when things started to click. I found anecdotally that a lot of meteorologists also play instruments. 

Jennifer Newman, Vice President, Atmospheric Science, REsurety, with a weather balloon.

“I did an internship with the University of Rhode Island, sending up weather balloons with instruments to measure ozone. Then the summer after my junior year, I went to the University of Oklahoma and got into more severe weather research, and ended up going there for grad school too. 

“My thesis was on how to better detect tornadoes with current weather radar systems. I did a lot of storm-chasing down there. It took me a couple of years of going out driving around dirt roads in Kansas, but I did eventually get to bag a couple of tornadoes. You end up running into all kinds of people, like a crowd of people on a dirt road in Kansas or Oklahoma. Now that I own a house, I have to say I don’t think I’d be thrilled if there was a tornado coming through or hail, knowing I would have to pay to replace my roof. I think I’m good with an occasional minor thunderstorm.

“While taking a renewable energy class during the last semester of my Master’s program, I realized I really loved learning about wind energy and the meteorology applications. That’s when I decided to stay for a PhD so that I could learn more. During my PhD, I got to set up meteorological instruments at some operational wind farms and analyze the data, which gave me a great understanding of how important accurate measurements are for wind energy. After finishing my PhD, I did a postdoc with the National Renewable Energy Laboratory in Boulder, Colorado.

“I’ve always thought I liked working in industry more than academia, and I wanted to move back to the Boston area, because my family is still here. I started reaching out to my network, and was connected with REsurety. It was a smaller company then, about 10 or 11 employees, and they were looking to hire some kind of research scientist, so my skill set matched really nicely. 

“I was able to look in-depth into the challenges we were facing and improvements we wanted to make with our generation modeling. What I bring is figuring out what we’re doing well, where we can improve, and working with the engineering team to make those changes to our wind and solar models.

“Math and physics tend to be male-dominated fields. Having two female co-advisors in graduate school was very impactful in my life. Seeing that they had to work hard to be heard always inspired me to speak up and be confident. There was only one other female when I got here, and so I started Women of REsurety. I want the females here to have a connection to other women working at the company.

“I had a daughter five months ago, so my hobby right now is child rearing!”

Jen’s full bio.

Join our team

Carbon Accounting with the Greenhouse Gas Protocols: Successes and Emerging Challenges

David Luke Oates
David Luke Oates is a carbon accounting subject matter expert.
David Luke Oates

By David Luke Oates, SVP of Power Markets Research, REsurety

The Greenhouse Gas Protocol is a foundational component of modern climate standards. It is incorporated into the Task Force on Climate-Related Financial Disclosures’ (TCFD) guidelines for voluntary climate disclosures1, as well as the Science-Based Targets Initiative’s (SBTi’s) recommendations for aligning corporate targets with climate goals.2 It has also largely been paralleled in the U.S. Security and Exchange Commission’s recent proposed rule on climate disclosures.3

The GHG Protocol has achieved considerable success in providing a common framework for voluntary disclosures. But it is now a fairly outdated standard, and its flaws are becoming more impactful and problematic. The GHG Protocol Corporate Standard was originally released in the early 2000s, with updated Scope 2 guidance released in 2015. The nearly seven years since that release have featured dramatic increases in corporate clean energy purchases and interest in accurate corporate climate disclosures.4 There is now growing interest in updating the GHG Protocol and addressing some of its shortcomings.

At REsurety, we spend much of our time helping buyers and sellers of clean electricity to manage their financial risks and achieve their decarbonization goals. We are particularly interested in ensuring that Scope 2 accounting is as effective as possible. Today, the GHG Protocol Scope 2 Guidance has two major flaws: 1) it does not ensure that all actual carbon emissions are accounted for across entities and 2) it often doesn’t create the right incentives for entities interested in decarbonization. 

On the first item, the GHG Protocol’s Market-Based method for Scope 2 accounting allows reporting entities to apply REC purchases to cover their consumption at an emissions rate of 0 tons/MWh. It also allows entities to account for their grid consumption by applying a simple-average emissions rate. This average emissions rate reflects the same clean energy claimed through REC retirements, effectively double-counting the impact of clean energy and contributing to under-reporting of emissions.5 While this double-counting may have been of little concern a decade ago, the volume of today’s clean energy purchases make it a more serious problem.

On the second item, by relying on average emissions rates with low temporal and spatial granularity, current Scope 2 guidance risks send the wrong signals to entities interested in decarbonization. Consider an entity purchasing solar energy that mostly displaces coal generation, in a grid that also includes considerable baseload nuclear. Since the average emissions rate of this grid is much lower than the emissions rate of the displaced coal, the reduction in the entity’s carbon footprint would not reflect the solar energy’s full carbon impact. In general, the activities achieving the greatest amount of decarbonization are not fully rewarded under the current GHG Protocol, creating a misalignment of incentives. We think there is an opportunity to fix both of these problems.

Governments and corporate entities have recently made ambitious climate mitigation commitments. Truly delivering on these commitments will require a modernized set of carbon accounting rules to align incentives and avoid double-counting. We believe that a revised Scope 2 carbon accounting framework based on granular marginal emissions data can help address some of the shortcomings we mentioned above. We look forward to sharing more details on potential solutions to these challenges in the months to come.

In the interim, we love talking with anyone who shares our goals of more accurate carbon impact measurement and the tools to maximize that impact – so please contact us at [email protected] if you have any questions or want to connect and discuss.

_______________________________________________________________________________________

Footnotes:

[1] See p. 21, Implementing the Recommendations of the Task Force on Climate-related Financial Disclosures, October 2021

[2] See p.3, SBTi Criteria and Recommendations, Version 5.0, October 2021

[3] See §I.D.2. (p. 40), The Enhancement and Standardization of Climate-Related Disclosures for Investors, SEC Proposed Rule, File No. S7-10-22

[4] U.S. corporate clean energy purchases grew from 1.2 GW/year in 2014 to over 11 GW/year in 2021. See Clean Energy Buyers Association Deal Tracker

[5] While this double-counting could theoretically be corrected by applying the residual mix emissions rate to all parties’ grid consumption, this approach is not feasible in many jurisdictions. Calculating the residual mix emissions rate depends on visibility into all private contracts for RECs between counterparties, something that individual reporting entities aren’t able to provide. In jurisdictions (such as the U.S.) where residual mix emissions rates are not available, current GHG Protocol guidance is to apply the average emissions rate to grid purchases. See GHG Protocol Scope 2 Guidance §6.11.4


Disclaimer.

Media Advisory: Prolonged periods of negative pricing in Q1 set new record

Blair Allen

REsurety’s REmap Q1 State of the Renewables Market report presents generation-weighted value, shape value, and capacity factor for major U.S. hubs

BOSTON, MAY 10, 2022 – The U.S. power grid saw record lows in the first quarter of 2022, REsurety’s REmap Q1 2022 State of the Renewables Market Report finds, with prolonged negative pricing in Texas expected to ease this summer.

Unlike the soaring prices of last year during the Texas energy crisis of February 2021, this year the ERCOT power grid saw record lows in Q1. It was another turn in a developing plotline REsurety commented on last quarter. 

One example: In February 2021, ERCOT West Hub (among others) settled at the market price cap of $9,000/MWh for three days; in February 2022 ERCOT West Hub saw a two day period where prices never rose above $0/MWh. Mild demand coupled with sustained periods of high wind and solar generation created the conditions for this negative pricing event, though these conditions weren’t isolated to only those few days. In fact, by the end of the quarter, West Hub more than doubled the number of negative-priced hours than were seen in Q1 the year prior.

REsurety creates the REmap-powered State of the Renewables Market report every quarter to provide readers with data-driven insight into the value and latest emerging trends of renewables in U.S. markets. The team uses its knowledge in power markets, atmospheric science, and renewable offtake to analyze thousands of locations, and summarize a few key findings, using the data that is available via its interactive software tool, REmap.

Key components in the report to be used to analyze trends in a given ISO, sub-regions of an ISO, or hub, are:

  • The generation weighted value, or the realized value of the wind and solar projects 
  • The shape value, or the relationship between the generation value and the simple-average market price
  • The net capacity factor for operating wind and solar projects 
Blair Allen, Director, Software Customer Success, REsurety
Blair Allen

“Using the modeled energy in REmap, which tells us how projects could have performed based on underlying wind/solar resource availability, last quarter West Texas solar projects saw anywhere from 20 to 30% of their potential hourly production for a given month happen in negatively priced hours. However, in reality, these projects weren’t operating at their potential capacity in these intervals, and either shut down or significantly ramped down production,” reports Blair Allen, Director, Software Customer Success, REsurety. 

Over the next quarter as the weather starts to transition to summer conditions negative pricing is expected to decline. With an increase and shift in demand, Q2 will likely be a transitional period, with the frequency of negative pricing hours remaining high to start before subsiding more materially by the end of the summer in mid Q3. 

The power of REmap lies in the historical and predictive modeling for renewable energy projects across the United States, as well as the ability to analyze hypothetical installations. Learn more by reading the Q1 report

About REsurety

REsurety is the leading analytics company empowering the clean energy economy. Operating at the intersection of weather, power markets, and financial modeling, we enable the industry’s decision-makers to thrive through best-in-class value and risk intelligence, and the tools to act on it. For more information, visit www.resurety.com or follow REsurety on LinkedIn

Contact:  Allison Lenthall, [email protected], +1-202-322-8285


Disclaimer.

Q1 2022 REmap Report

REsurety creates the REmap-powered State of the Renewables Market report every quarter to provide readers with data-driven insight into the emerging trends and value of renewables in U.S. power markets. We combine our domain expertise in power markets, atmospheric science, and renewable offtake to analyze thousands of projects and locations and summarize key findings here. All of the data behind this analysis is available via our interactive software tool, REmap. Please fill out the form to access the full report, the Editor’s Note is below.

Q1 2022 State of the Renewables Market Report
Name*
This field is for validation purposes and should be left unchanged.

Blair Allen, director, software customer success, REsurety

Blair Allen
Director, Software Customer Success, REsurety

Editor’s Note: As the first quarter of 2022 concludes, we reflect on historic highs and historic lows. Another record in ERCOT marks the quarter’s passing, just as one did a year ago following the market events of February 2021. However, unlike the soaring prices of last year, this record involves a prolonged period of negative pricing, and another turn in a developing plotline we commented on last quarter.Please fill out the form below to access the report.

Consider this comparison: in February 2021 ERCOT West Hub (along with others) settled at the market price cap of $9,000/MWh for three days; in February 2022 ERCOT West Hub saw a two day period where prices never rose above $0/MWh. Mild demand coupled with sustained periods of high wind and solar generation created the conditions for this negative pricing event, though these conditions weren’t isolated to only those few days. In fact, by the end of the quarter, West Hub would more than double the number of negative-priced hours than were seen in Q1 the year prior.

One impact of this increasing frequency in negative pricing is rising levels of curtailment, particularly among solar projects which, unlike wind, don’t benefit from
the production tax credit and are less likely to operate below $0/MWh. For example, using the modeled energy in REmap, which tells us how projects could have performed based on underlying wind/solar resource availability, last quarter West Texas solar projects saw anywhere from 20 to 30% of their potential hourly production for a given month fall in negatively priced hours. However, in reality these projects weren’t operating at their potential capacity in these intervals, and either shut down or significantly ramped down production.

Another important angle to consider: whereas for the last few years hourly negative prices at West Hub were evenly split between on-peak and off-peak hours during this time of year, this year saw that balance shift to 60/40 in favor of on-peak hours. The cause for this shift is clear: increasing amounts of solar capacity means that low pricing is no longer just following the production profiles for wind, and is coinciding more regularly with the rise and fall of solar energy.

Looking ahead, as seasons change into summer conditions so too do we expect a change in the volume of negative pricing. An increase and shift in demand– which will steadily move more towards the mid afternoon as air conditioning ramps–and a decline in wind production at the same time should converge to steadily mitigate on-peak negative price frequency. Q2 will likely be a transitional period, with frequency of negative pricing hours remaining high to start before subsiding more materially by the end of the quarter.

Friends don’t let friends use 8760s

says Jennifer Newman, VP of Atmospheric Science Research, REsurety

As featured in POWER Magazine

Any company embarking on a new project must do its research to ensure that it calculates the proceeds based on the right financial information. With so much data now readily available, it’s more important than ever to use the right data, and make accurate calculations. 

REsurety's Jennifer Newman, VP of atmospheric science research, talks about 8760s.

Amid the boom in demand for renewable power plants, that is not always happening when backers go to measure the value of the energy they will generate. Here’s why, according to Jennifer Newman, Vice President of Atmospheric Science Research at REsurety, the Boston-based renewable industry data and analytics company. 

Q: What is an 8760 and how is it used in the renewable energy industry?

A:  An 8760 (sometimes referred to as a typical meteorological year or TMY) consists of hourly generation values for a wind or solar project for all 8,760 hours of a typical year. Importantly, 8760s are almost always used to represent average generation for a renewable energy project in a given hour. 

Q:  And what’s the problem? Why shouldn’t 8760s be used to estimate the value of power generation being produced by renewable energy projects? 

A:  An 8760 isn’t bad on its own – it’s a perfectly acceptable way of representing average generation. The issue is when a generation 8760 is paired with hourly power prices to produce either a revenue backcast (an estimate of the revenue a project would have made given historical prices) or a revenue forecast (an estimate of how much revenue a project could earn in the future). 

The problem with a backcast is that hourly renewable generation influences power prices during each hour. And that’s because wind and solar tend to be very inexpensive sources of electricity. So an hour where there’s a lot of wind or solar on the grid will tend to be associated with lower power prices, particularly in markets with high renewable penetration. When you use an 8760 instead of actual generation values during each timestamp, you aren’t able to capture that impact of hourly generation on hourly power prices.

And when analysts are using a model to predict future power prices, it’s a mistake to assume that conditions in the future will be similar to  an “average weather year”. Abnormal weather conditions can cause drastic price changes, as we all saw in Texas during February 2021.

Q: So what should be used to accurately calculate the value of renewable power generation?

A: There’s an abundance of rich datasets we can use to inform our decisions on whole new levels. For a backcast analysis, we should be using concurrent generation and price time series data to make these calculations and avoid errors (i.e. the generation volume that is used for 7:00 am on January 13th, 2019 should reflect the same weather conditions that generated the price that was observed in that same hour). In a forward-looking scenario, you should use a variety of different potential weather conditions beyond just an average year. Would you want to use a typical Texas February to project possible gains and losses, now that you know that Texas in February of 2021 is possible?  

Q: Where does a company turn then, to ensure it’s using the right information?

A:  At REsurety we offer the REmap tool, which models hourly generation for every wind and solar project in the United States, and will soon look forward at hypothetical situations to allow for future planning. REmap also offers data for synthetic situations – what-if planning for potential future sites – including historical modeled generation, observed power prices, and the combination of generation and power prices to estimate revenue. 

Getting beyond 8760s can not only steer a company to site a new renewable project in one location versus another, it can also provide guidance on the financial risk associated with a range of potential weather conditions.

Learn more, download the white paper.

Disclaimer.