PODCAST: SunCast episode 403 – Friends Don’t Let Friends Use 8760s with Dr. Jennifer Newman

A recent white paper from REsurety, with contributions from Hannon Armstrong, a leading investor in climate solutions, offers an in-depth analysis into how using an “8760” energy model can lead to significant errors in revenue modeling — topping 30% in some high renewable penetration markets.

Suncast

Despite their widespread use in the renewable energy industry, using an 8760 to project financial performance can lead to significant errors in revenue models. In particular, revenue models that pair an 8760 with historical prices miss the impact of hourly renewable energy generation on hourly power prices. Because wind and solar plants are relatively inexpensive sources of generation, there tends to be a negative correlation between generation and power price in markets with high renewable penetration.

A recent white paper from REsurety, with contributions from Hannon Armstrong, a leading investor in climate solutions, offers an in-depth analysis into how using an “8760” energy model can lead to significant errors in revenue modeling — topping 30% in some high renewable penetration markets.

An “8760” (also known as a “typical meteorological year,” or “TMY”) is the average generation expected for a given wind or solar project for each of the 8,760 hours in a non-leap year. As implied by its “typical meteorological year” moniker, an 8760 contains average generation values reflecting typical seasonal and diurnal weather patterns. The problem with using an 8760 is that “typical” weather isn’t actually all that common, and high prices almost always coincide with extreme weather.

In today’s episode, Nico discusses the findings with the whitepaper’s author, Dr. Jennifer Newman, VP of Atmospheric Science at REsurety.