Tag: clean energy buyers

Q2 2024 State of the Renewables Market Report

A view of Q2 2024 U.S. renewable energy performance

Q2 2024 State of the Renewables Market Cover

REsurety creates the State of the Renewables Market report every quarter to provide readers with data-driven insight into the value and emerging trends of renewable generation in U.S. power markets. Please fill out the form to access the full report, the Editor’s Note is below.

Editor’s Note:

Maha Mapara, REsurety
Maha Mapara
Analyst
Senior Analyst,
Analytics Services
REsurety's Devon Lukas
Devon Lukas
Lead Analyst
Associate,
Analytics Services
REsurety's Carl Ostridge
Carl Ostridge
Editor
SVP,
Analytics Services

Deliverability: Can Clean Energy Reach Consumers?

Clean energy generators are the fastest growing sources of new energy on grids across the country. But if the impact of those new projects is going to be maximized, and utilized meaningfully in hourly matching carbon offset techniques, the country also needs to invest large sums in improving transmission infrastructure to get the clean energy to load centers. There have been a couple of recent announcements aiming to speed up the development of much-needed transmission (e.g. FERC Order 1920 and Department of Energy TSED funding), but how much of a problem is transmission currently?

To answer this question, we’ll use the concept of “deliverability” – in other words, how much clean energy can reach consumers in a given location. The concept of deliverability is already built into the market prices that system operators publish. There are three components to Locational Marginal Prices (LMPs); energy, congestion, and line losses. Line losses tend to contribute relatively little to the overall prices, and so we can use the difference in LMPs between two locations to estimate the deliverability of the energy. When the LMP at a generator diverges materially from the LMP at the load center, this is a sign that the location is experiencing congestion – either high prices that encourage generation, or low (even negative) prices resulting in renewable generator curtailment.

For this analysis, we’ve defined power as “deliverable” if the LMP at the generator is within 10% of the LMP at the load center. Renewable generation output during periods with greater than 10% LMP divergence is likely subject to congestion, and is therefore considered undeliverable. This is a somewhat simple metric, but it aims to boil down a complex issue into something digestible and relevant; after all, deliverability is a key component in the developing hourly matching frameworks.

In Figure 1, the 12-month trailing average of deliverability is shown for clean energy generators in ERCOT and PJM and load centers in Houston and Chicago, respectively. Historically, only between half and two-thirds of clean power is “deliverable” to these major load centers. This highlights that transmission congestion has been, and still is, a meaningful issue. It’s also notable that despite higher penetration levels of wind and solar in ERCOT, the deliverability of clean energy to Chicago has dropped more rapidly since the start of 2021.

Figure 1: Trailing 12-month average clean energy deliverability to Houston and Chicago.
Figure 1: Trailing 12-month average clean energy deliverability to Houston and Chicago.

When we look a little deeper at the ERCOT deliverability, separating the results for wind and solar projects, the story of the flatter deliverability trend becomes clearer. The deliverability of wind in ERCOT has been trending downwards over the past few years, while solar has trended upwards. There are two factors in favor of solar’s better deliverability: timing and location. Solar’s on-peak generation coincides with higher load, leading to fewer congestion issues. Furthermore, the operational solar fleet is more geographically dispersed compared to the wind fleet, meaning fewer solar projects are subject to major transmission constraints (such as in the Texas Panhandle and Gulf Coast).

Table 1: Deliverability of ERCOT wind and solar energy to Houston.
Table 1: Deliverability of ERCOT wind and solar energy to Houston.

Of course, these trends will evolve over time as more clean energy is added to the grid, thermal generators are decommissioned, energy storage capacity expands, gross and net load profiles evolve, and transmission either stays constant or gets upgraded. This metric is just the beginning of our efforts to analyze this complex issue. A REsurety whitepaper on deliverability is in the works, covering more regions and diving deeper into the underlying causes and resulting carbon impacts.

Q2 2024 Report Download

"*" indicates required fields

Name*
This field is for validation purposes and should be left unchanged.

Return to the blog post main menu.

Smart Energy Decisions Renewable Energy Forum

Smart Energy Decisions Renewable Energy Forum

REsurety was excited to attend the event in Aventura, FL.

Smart Energy Decisions Renewable Energy Forum 2024
Christine Donohue, Sales Manager

REsurety’s Christine Donohue attended the 2024 Smart Energy Decisions Renewable Energy Forum on June 12-14, 2024, in Aventura, Florida. To learn more or get in touch with REsurety, click the button below:

About the forum

The Renewable Energy Forum delivers peer learning, networking, and consultative meetings to energy and sustainability professionals pursuing information and solutions to advance their organization’s renewable energy goals.

Held once a year and produced by Smart Energy Decisions – the first digital resource dedicated to addressing the information needs of large power customers – the Renewable Energy Forum is a valuable step in your emissions reduction journey.

Access the agenda for the event here.

Return to the event page main menu.

Q1 2024 State of the Renewables Market Report

A view of Q1 2024 U.S. renewable energy performance

REsurety creates the State of the Renewables Market report every quarter to provide readers with data-driven insight into the value and emerging trends of renewable generation in U.S. power markets. Please fill out the form to access the full report, the Editor’s Note is below.

Editor’s Note:

REsurety's Devon Lukas
Devon Lukas
Lead Analyst
Senior Analyst, Analytics Services
REsurety's Carl Ostridge
Carl Ostridge
Editor
SVP, Analytics Services

Record-Breaking Winter for Solar: Behind The Scenes

Solar output in ERCOT has been in the news as of late, with the buzz around the record-breaking 17.2 GW peak on February 19th amplified by the 18.7 GW peak on March 28th. While impressive, these records are actually not broken as often, or by as much, as one might initially expect given the amount of recent solar buildout. The current generation record would be 300 MW higher were it not for the complex interactions between the weather, transmission infrastructure, and tax incentives.

First, and perhaps most obviously, the weather impacts renewable generation and demand, and when there’s too much of the former and not enough of the latter, renewable projects are curtailed. Net load (total load minus renewable generation) is a useful metric to highlight this behavior. Figure 1 shows solar curtailment as a function of net load for Q1 2024. It’s clear that as net load drops below 20 GW, solar generation starts to be curtailed, increasing quickly as net load reduces further. These grid-wide supply and demand balancing issues that lead to renewable energy curtailment also play out on a local level, caused by transmission constraints. Even if there’s enough demand overall on the grid, if the renewable energy is located behind a transmission constraint, curtailment will still happen. Finally, there’s the tax incentives – wind projects tend to receive the Production Tax Credit (PTC) while solar projects tend to receive the Investment Tax Credit (ITC). Since the PTC is earned on a per megawatt-hour basis, many wind projects continue generating even when wholesale prices are negative. On the other hand, ITC-qualified solar projects will curtail as soon as wholesale prices become negative.

Figure 1: Net Load and Solar Curtailment, January – March 2024. Record-breaking periods shown in blue, missed records shown in green.

So, in terms of setting solar generation records, there needs to be an alignment of these variables – high solar generation potential, relatively low wind generation, relatively high load, and no meaningful transmission constraints. Figure 2 shows two days in February with different conditions and different outcomes. The first is February 19th, when there were favorable conditions and a new record was set – the skies were clear, wind output was low during the day, and net load stayed above 20 GW. A few days later on February 24th, conditions were not as favorable – skies were clear in the morning, but wind output was increasing and net load dropped below 20 GW. This meant solar projects were curtailed and while a new solar generation record 300 MW above the February 19th level could have been set, it was not.

Figure 2: Actual and Uncurtailed Solar and Wind on February 19th, 2024 (left) and February 24th, 2024 (right) Compared to Net Load (load minus actual wind and solar generation).

It’s also important to note the seasonality in these trends. The time of year makes these solar output records more unlikely – the first quarter of the year tends to be windy and load levels are on the low side too. As the summer approaches, wind generation will be lower on average and load will be higher. More solar projects will also likely be commissioned by then, so expect more records to be broken (and perhaps more frequently). Looking further forward, it will be interesting to see if some of the new solar projects elect for Production Tax Credits and therefore start to operate during periods of negative prices. If so, expect even more records to be set.

However, lost generation due to curtailment isn’t all doom and gloom. By definition, renewables make up a large proportion of the grid’s generation during periods of low net load and curtailment. For corporate buyers measuring their impact in emissionality terms, this means the ‘lost’ emissions impact due to curtailment is relatively small – most of that curtailed energy would have displaced other clean fuels (rather than fossil generators). This is especially true during periods of low net load, where high wind generation will keep marginal emissions rates low regardless of the level of solar curtailment. Figure 3 shows the average ERCOT Locational Marginal Emissions rate declining as renewable energy curtailments increase.

Figure 3: Daily Average ERCOT LME (kgCO2e / MWh) and Renewable Energy Curtailment in January, 2024.

As always with power markets, there’s a lot more going on behind the headlines of record breaking solar output.

In addition to downloading the report, you may want to watch a recording of a webinar on the Q1 report that we hosted in May, with the editor, Carl Ostridge, and lead analyst, Devon Lukas. They shared findings, insights, and hosted a live Q&A.

Q1 2024 Report Download

"*" indicates required fields

Name*
This field is for validation purposes and should be left unchanged.

Return to the blog post main menu.

Webinar Recording: Q1 2024 Quarterly Report Findings, Insight, and Q&A

REsurety logo

REsurety creates the State of the Renewables Market report every quarter to provide readers with data-driven insight into the value and emerging trends of renewable generation in U.S. power markets. We use our domain expertise in power markets, atmospheric science, and renewable offtake to analyze thousands of locations and summarize key findings.

In this webinar, editor Carl Ostridge and lead analyst Devon Lukas discussed the editor’s note, which examined how there’s more than meets the eye when it comes to ERCOT’s record-breaking solar generation. They also unpacked key findings highlighted in the Q1 2024 edition of the report, including recent trends and drivers behind renewable energy value across the U.S.

The session was interactive and there was an extensive Q&A session after the presentation. Watch the recording or read the transcript below.

About the speakers

Carl Ostridge, SVP, Analytics Services

REsurety's Carl Ostridge

Carl Ostridge has more than 15 years of energy experience, specializing in energy risk management, electricity markets, and renewable energy project performance. Prior to joining REsurety, Mr. Ostridge worked for DNV GL analyzing and improving the accuracy of wind farm energy analyses and developing models to predict wind farm energy output. His extensive industry experience and proven analytical skills support REsurety’s industry-leading tools and expertise in weather-related risk and valuation for renewable energy projects.

Mr. Ostridge holds a Master’s degree in Astrophysics from the University of Exeter in the UK.

Devon Lukas, Senior Analyst

REsurety's Devon Lukas

Devon Lukas is a data analyst with experience developing data visualization tools. Before joining REsurety, she conducted undergraduate research on floating offshore wind turbine structures, completed greenhouse gas emission analyses for the Pioneer Valley region of Massachusetts as well as the UMass Mount Ida campus, and developed various computational tools for renewable energy data sources. At REsurety, Devon is part of the pre-trade services team in which she primarily structures and analyzes weather-related risk mitigation contracts for clean energy buyers & sellers.

Devon holds a Bachelor of Science degree with a double major in Physics & Astronomy, and an integrated concentration in Renewable Energy from the University of Massachusetts in Amherst, Massachusetts.

Transcript