Tag: Market Report

Q3 2024 State of the Renewables Market Report

A view of Q3 2024 U.S. renewable energy performance

REsurety Q3 2024 State of the Renewables Market Report

REsurety creates the State of the Renewables Market report every quarter to provide readers with data-driven insight into the value and emerging trends of renewable generation in U.S. power markets. Please fill out the form to access the full report, the Editor’s Note is below.

Editor’s Note:

Maha Mapara, REsurety
Maha Mapara
Analyst
Senior Analyst,
Analytics Services
REsurety's Devon Lukas
Devon Lukas
Lead Analyst
Associate,
Analytics Services
Adam Reeve
Adam Reeve
Editor
SVP,
Customer Experience

AI Introduces Unprecedented Power Needs: How Will Clean Energy Markets Be Impacted?

The landscape of U.S. power markets is being dramatically reshaped by an unprecedented wave of data center development, driven largely by artificial intelligence (AI) and cloud computing demand. The headlines are alarming: hyperscalers are announcing tens of billions of dollars of investments this year in data center infrastructure, ISOs are forecasting supply shortfalls and/or reliability concerns, and load forecasts are off the charts relative to historical growth rates.1-3

Figure 1: PJM demand growth forecast over time. Source: PJM.
Figure 1: PJM demand growth forecast over time. Source: PJM.

With a historically reliable power supply and low-latency fiber network, the PJM region is currently a priority for digital infrastructure development – with more than 4GW already in Northern Virginia alone. PJM’s latest load forecast report forecasts a 1.6% annual growth rate for summer peak demand and 1.8% for winter peak demand, represented in Figure 1. Both growth rates are multiples larger than what we have seen historically, doubling from the estimates released last year with data center growth cited as a major contributor.

To put these numbers into perspective, summer peak demand in PJM is expected to increase above this year’s peak by almost 42GW in 2039 – representing a 28% increase. The winter peaks are forecasted to be 31% higher than last winter’s. This dramatic expansion puts grid reliability at risk, and also limits coal retirements in the next few years.2

What does this all mean for clean energy buyers or investors trying to plan for the future? Our guidance has generally fallen into one of three categories:

First, start with the historical facts on the ground.

All too often, we see forecasts – whether about future power prices, intra-day price volatility, wind/solar capture rates, congestion and curtailment, or emissions impacts – that are disconnected from historical realities. We find that this sort of discontinuity is very rarely warranted in power markets, even in a time of accelerated change (such as today).

Figure 2: Historical and Forecasted PJM Generator Capacity and Peak Load.
Figure 2: Historical and forecasted PJM generator capacity and peak load.

Figure 2 shows the historical and REsurety’s forecasted generation supply (colored bars) and peak load (line) in PJM. While the market will be tight over the next few years, after that we expect load growth to be more balanced with supply growth.

The result of this will be elevated prices in peak winter and summer months over the next few years, followed by smoother seasonal profiles in later years. Overall, our forecasted PJM power pries are increasing over the next 20 years in all of our modeled scenarios.

Second, get back to fundamentals.

While AI-driven load growth is a new variable to consider when evaluating the future, it is not the only variable in power markets. Fuel prices, renewable energy penetration, hourly weather conditions, and congestion continue to dominate the value story for renewables, and likely will for some time. Consider solar capture rates in ERCOT this summer: while ERCOT set a new peak load (thanks in part to the 7+ GW of data centers in Texas), the summer capture rate for solar projects in Q3 hit a record low, dropping below 100% for the first time ever due to the rapid continued buildout of solar in Texas (Figure 3). Wind capture rates, meanwhile, have actually increased, as solar balances out the renewable mix. Our forecasts see this trend continuing into the future, with the average solar capture rate over the next decade at ~60%, as solar penetration continues to increase in ERCOT.

Figure 3: Summer solar and wind capture rates in ERCOT North.
Figure 3: Summer solar and wind capture rates in ERCOT North.

Third, do not underestimate the impact of transmission.

This is relevant to multiple areas in the era of AI load growth. Data centers are increasingly struggling to get load interconnection agreements in place, causing delays and/or relocations of planned investments. This is already acting as a brake, all else equal, slowing AI-driven load growth. Additionally, congestion is on the rise, resulting in renewables getting bottlenecked and becoming undeliverable to load.

This has both financial and environmental implications: project owners and corporate offtakers with basis-sharing provisions will be financially impacted, and the emissions benefit of the clean generation will be significantly reduced. Our recent study found that 10 million metric tonnes of CO2e were emitted in ERCOT alone last year as a consequence of transmission congestion (Figure 4).4 When developing a clean energy purchasing strategy, accurately evaluating the “deliverability” of the generated clean energy is an increasingly critical consideration.

Figure 4: Calculated ISO-wide congestion carbon-rent.
Figure 4: Calculated ISO-wide congestion carbon-rent.

The intersection of AI-driven load growth and clean energy development presents unprecedented opportunities, but success demands strategies grounded in historical data, fundamental market drivers, and realistic infrastructure constraints – and not over-reacting to headline growth numbers. At REsurety, we remain committed to providing the analytical tools and expertise needed to navigate these complexities and make informed decisions in this rapidly evolving market landscape.


Sources:
1. Bain & Company. Technology Report 2024. https://www.bain.com/globalassets/noindex/2024/bain_report_technology_report_2024.pdf, 2024.
2. PJM Resource Adequacy Planning Department. PJM Load Forecast Report. https://www.pjm.com/-/media/library/reports-notices/load-forecast/2024-load-report.ashx, 2024.
3. Gelles, D. A.I.’s Insatiable Appetite for Energy. https://www.nytimes.com/2024/07/11/climate/artificial-intelligence-energy-usage.html, 2024.
4. Sofia, S.; Dvorkin, Y. Carbon Impact of Intra-Regional Transmission Congestion. https://resurety.com/carbonimpact/, 2024.

Q3 2024 Report Download

"*" indicates required fields

Name*
This field is for validation purposes and should be left unchanged.

Return to the blog post main menu.

Q2 2024 State of the Renewables Market Report

A view of Q2 2024 U.S. renewable energy performance

Q2 2024 State of the Renewables Market Cover

REsurety creates the State of the Renewables Market report every quarter to provide readers with data-driven insight into the value and emerging trends of renewable generation in U.S. power markets. Please fill out the form to access the full report, the Editor’s Note is below.

Editor’s Note:

Maha Mapara, REsurety
Maha Mapara
Analyst
Senior Analyst,
Analytics Services
REsurety's Devon Lukas
Devon Lukas
Lead Analyst
Associate,
Analytics Services
REsurety's Carl Ostridge
Carl Ostridge
Editor
SVP,
Analytics Services

Deliverability: Can Clean Energy Reach Consumers?

Clean energy generators are the fastest growing sources of new energy on grids across the country. But if the impact of those new projects is going to be maximized, and utilized meaningfully in hourly matching carbon offset techniques, the country also needs to invest large sums in improving transmission infrastructure to get the clean energy to load centers. There have been a couple of recent announcements aiming to speed up the development of much-needed transmission (e.g. FERC Order 1920 and Department of Energy TSED funding), but how much of a problem is transmission currently?

To answer this question, we’ll use the concept of “deliverability” – in other words, how much clean energy can reach consumers in a given location. The concept of deliverability is already built into the market prices that system operators publish. There are three components to Locational Marginal Prices (LMPs); energy, congestion, and line losses. Line losses tend to contribute relatively little to the overall prices, and so we can use the difference in LMPs between two locations to estimate the deliverability of the energy. When the LMP at a generator diverges materially from the LMP at the load center, this is a sign that the location is experiencing congestion – either high prices that encourage generation, or low (even negative) prices resulting in renewable generator curtailment.

For this analysis, we’ve defined power as “deliverable” if the LMP at the generator is within 10% of the LMP at the load center. Renewable generation output during periods with greater than 10% LMP divergence is likely subject to congestion, and is therefore considered undeliverable. This is a somewhat simple metric, but it aims to boil down a complex issue into something digestible and relevant; after all, deliverability is a key component in the developing hourly matching frameworks.

In Figure 1, the 12-month trailing average of deliverability is shown for clean energy generators in ERCOT and PJM and load centers in Houston and Chicago, respectively. Historically, only between half and two-thirds of clean power is “deliverable” to these major load centers. This highlights that transmission congestion has been, and still is, a meaningful issue. It’s also notable that despite higher penetration levels of wind and solar in ERCOT, the deliverability of clean energy to Chicago has dropped more rapidly since the start of 2021.

Figure 1: Trailing 12-month average clean energy deliverability to Houston and Chicago.
Figure 1: Trailing 12-month average clean energy deliverability to Houston and Chicago.

When we look a little deeper at the ERCOT deliverability, separating the results for wind and solar projects, the story of the flatter deliverability trend becomes clearer. The deliverability of wind in ERCOT has been trending downwards over the past few years, while solar has trended upwards. There are two factors in favor of solar’s better deliverability: timing and location. Solar’s on-peak generation coincides with higher load, leading to fewer congestion issues. Furthermore, the operational solar fleet is more geographically dispersed compared to the wind fleet, meaning fewer solar projects are subject to major transmission constraints (such as in the Texas Panhandle and Gulf Coast).

Table 1: Deliverability of ERCOT wind and solar energy to Houston.
Table 1: Deliverability of ERCOT wind and solar energy to Houston.

Of course, these trends will evolve over time as more clean energy is added to the grid, thermal generators are decommissioned, energy storage capacity expands, gross and net load profiles evolve, and transmission either stays constant or gets upgraded. This metric is just the beginning of our efforts to analyze this complex issue. A REsurety whitepaper on deliverability is in the works, covering more regions and diving deeper into the underlying causes and resulting carbon impacts.

Q2 2024 Report Download

"*" indicates required fields

Name*
This field is for validation purposes and should be left unchanged.

Return to the blog post main menu.

Q1 2024 State of the Renewables Market Report

A view of Q1 2024 U.S. renewable energy performance

REsurety creates the State of the Renewables Market report every quarter to provide readers with data-driven insight into the value and emerging trends of renewable generation in U.S. power markets. Please fill out the form to access the full report, the Editor’s Note is below.

Editor’s Note:

REsurety's Devon Lukas
Devon Lukas
Lead Analyst
Senior Analyst, Analytics Services
REsurety's Carl Ostridge
Carl Ostridge
Editor
SVP, Analytics Services

Record-Breaking Winter for Solar: Behind The Scenes

Solar output in ERCOT has been in the news as of late, with the buzz around the record-breaking 17.2 GW peak on February 19th amplified by the 18.7 GW peak on March 28th. While impressive, these records are actually not broken as often, or by as much, as one might initially expect given the amount of recent solar buildout. The current generation record would be 300 MW higher were it not for the complex interactions between the weather, transmission infrastructure, and tax incentives.

First, and perhaps most obviously, the weather impacts renewable generation and demand, and when there’s too much of the former and not enough of the latter, renewable projects are curtailed. Net load (total load minus renewable generation) is a useful metric to highlight this behavior. Figure 1 shows solar curtailment as a function of net load for Q1 2024. It’s clear that as net load drops below 20 GW, solar generation starts to be curtailed, increasing quickly as net load reduces further. These grid-wide supply and demand balancing issues that lead to renewable energy curtailment also play out on a local level, caused by transmission constraints. Even if there’s enough demand overall on the grid, if the renewable energy is located behind a transmission constraint, curtailment will still happen. Finally, there’s the tax incentives – wind projects tend to receive the Production Tax Credit (PTC) while solar projects tend to receive the Investment Tax Credit (ITC). Since the PTC is earned on a per megawatt-hour basis, many wind projects continue generating even when wholesale prices are negative. On the other hand, ITC-qualified solar projects will curtail as soon as wholesale prices become negative.

Figure 1: Net Load and Solar Curtailment, January – March 2024. Record-breaking periods shown in blue, missed records shown in green.

So, in terms of setting solar generation records, there needs to be an alignment of these variables – high solar generation potential, relatively low wind generation, relatively high load, and no meaningful transmission constraints. Figure 2 shows two days in February with different conditions and different outcomes. The first is February 19th, when there were favorable conditions and a new record was set – the skies were clear, wind output was low during the day, and net load stayed above 20 GW. A few days later on February 24th, conditions were not as favorable – skies were clear in the morning, but wind output was increasing and net load dropped below 20 GW. This meant solar projects were curtailed and while a new solar generation record 300 MW above the February 19th level could have been set, it was not.

Figure 2: Actual and Uncurtailed Solar and Wind on February 19th, 2024 (left) and February 24th, 2024 (right) Compared to Net Load (load minus actual wind and solar generation).

It’s also important to note the seasonality in these trends. The time of year makes these solar output records more unlikely – the first quarter of the year tends to be windy and load levels are on the low side too. As the summer approaches, wind generation will be lower on average and load will be higher. More solar projects will also likely be commissioned by then, so expect more records to be broken (and perhaps more frequently). Looking further forward, it will be interesting to see if some of the new solar projects elect for Production Tax Credits and therefore start to operate during periods of negative prices. If so, expect even more records to be set.

However, lost generation due to curtailment isn’t all doom and gloom. By definition, renewables make up a large proportion of the grid’s generation during periods of low net load and curtailment. For corporate buyers measuring their impact in emissionality terms, this means the ‘lost’ emissions impact due to curtailment is relatively small – most of that curtailed energy would have displaced other clean fuels (rather than fossil generators). This is especially true during periods of low net load, where high wind generation will keep marginal emissions rates low regardless of the level of solar curtailment. Figure 3 shows the average ERCOT Locational Marginal Emissions rate declining as renewable energy curtailments increase.

Figure 3: Daily Average ERCOT LME (kgCO2e / MWh) and Renewable Energy Curtailment in January, 2024.

As always with power markets, there’s a lot more going on behind the headlines of record breaking solar output.

In addition to downloading the report, you may want to watch a recording of a webinar on the Q1 report that we hosted in May, with the editor, Carl Ostridge, and lead analyst, Devon Lukas. They shared findings, insights, and hosted a live Q&A.

Q1 2024 Report Download

"*" indicates required fields

Name*
This field is for validation purposes and should be left unchanged.

Return to the blog post main menu.

Webinar Recording: Q1 2024 Quarterly Report Findings, Insight, and Q&A

REsurety logo

REsurety creates the State of the Renewables Market report every quarter to provide readers with data-driven insight into the value and emerging trends of renewable generation in U.S. power markets. We use our domain expertise in power markets, atmospheric science, and renewable offtake to analyze thousands of locations and summarize key findings.

In this webinar, editor Carl Ostridge and lead analyst Devon Lukas discussed the editor’s note, which examined how there’s more than meets the eye when it comes to ERCOT’s record-breaking solar generation. They also unpacked key findings highlighted in the Q1 2024 edition of the report, including recent trends and drivers behind renewable energy value across the U.S.

The session was interactive and there was an extensive Q&A session after the presentation. Watch the recording or read the transcript below.

About the speakers

Carl Ostridge, SVP, Analytics Services

REsurety's Carl Ostridge

Carl Ostridge has more than 15 years of energy experience, specializing in energy risk management, electricity markets, and renewable energy project performance. Prior to joining REsurety, Mr. Ostridge worked for DNV GL analyzing and improving the accuracy of wind farm energy analyses and developing models to predict wind farm energy output. His extensive industry experience and proven analytical skills support REsurety’s industry-leading tools and expertise in weather-related risk and valuation for renewable energy projects.

Mr. Ostridge holds a Master’s degree in Astrophysics from the University of Exeter in the UK.

Devon Lukas, Senior Analyst

REsurety's Devon Lukas

Devon Lukas is a data analyst with experience developing data visualization tools. Before joining REsurety, she conducted undergraduate research on floating offshore wind turbine structures, completed greenhouse gas emission analyses for the Pioneer Valley region of Massachusetts as well as the UMass Mount Ida campus, and developed various computational tools for renewable energy data sources. At REsurety, Devon is part of the pre-trade services team in which she primarily structures and analyzes weather-related risk mitigation contracts for clean energy buyers & sellers.

Devon holds a Bachelor of Science degree with a double major in Physics & Astronomy, and an integrated concentration in Renewable Energy from the University of Massachusetts in Amherst, Massachusetts.

Transcript