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Abstract

Carbon accounting frameworks guide policy
and decision-making around investments in re-
newable energy, making them critical to un-
derstand in the context of real-world grid op-
erations. In the absence of empirical work
assessing the effects of intra-regional conges-
tion on carbon emissions, ongoing policy design
assumes that transmission congestion within
grid boundaries can be ignored. In this work,
we aim to test this assumption by quantify-
ing the frequency and severity of intra-regional
congestion and its impacts on carbon emis-
sions and prominent carbon accounting frame-
works. This analysis is done in both PJM
and ERCOT using nodal locational marginal
emissions data. Through several case stud-
ies, we find that load that is 100% hourly-
matched through load-shifting will often re-
sult in significant net operational emissions,
and sometimes even increase net emissions rel-
ative to annual-matching. This work demon-
strates that, in the absence of robust transmis-
sion expansion, grid-region boundaries are in-
sufficient to ensure hourly-matching is effective.
Impacts of intra-regional transmission conges-
tion are shown to be vital components of effec-
tive carbon accounting frameworks, calling into
question frequently made assumptions ignoring
intra-regional congestion in studies and policy
proposals.

Introduction

To meet the urgent need to rapidly decar-
bonize the grid, wind and solar generation has
been deployed at record rates across the United
States1,2. However, the impact of this deploy-
ment on reducing carbon emissions has been
dampened. As grids across the US have experi-
enced severe and growing transmission limita-
tions, it is vital to examine the impact on re-
newable generation’s ability to effectively meet
load and reduce overall emissions.
The rising penetration of wind and solar

power has driven growth in transmission con-
gestion, as wind and solar are often sited close
together, far from load centers, and tend to pro-
duce power at similar times due to their shared
weather conditions. This results in significant
amounts of clean power stressing the transmis-
sion between regions of renewable energy gen-
eration and load centers. These bottlenecks
between renewable generation sources and de-
mand limit the generators’ ability to effectively
displace fossil generators and their associated
emissions. As a result, renewable projects in
certain locations within a grid region are more
valuable than others from a carbon emissions
reduction standpoint. Despite that, incentives
that inform where projects get built and how
credit is attributed for the associated emissions
reductions, often don’t take these congestion
impacts into account.
There is limited literature quantifying the fre-
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quency and severity of deliverability limitations
within grid-regions. There have been a number
of studies3–5 examining approaches and policies
to effectively drive decarbonization; however,
they generally ignore intra-regional transmis-
sion constraints. These works do identify con-
gestion between regions as an important factor
that, when ignored in policy, can lead to sig-
nificant induced emissions due to the lack of
physical deliverability3,5. Given the meaning-
ful impact that intra-regional transmission con-
gestion has on system costs and operations in
many grid-regions6,7, it is important to explore
its impact on carbon emissions and understand
its importance to accurately measure emissions
and guide investment, development, and pro-
curement decisions.
The current greenhouse gas (GHG) protocol

for carbon accounting does not account for con-
gestion, or the variability of emissions hour-to-
hour and across grid-region. Proposed changes
to carbon accounting policy largely use ’hourly-
matching’, which requires that clean generation
be generated in the same hour and grid-region
as the load it aims to offset. These policies
cite grid-regions defined by the Department of
Energy (DOE)8 as ’deliverability regions’, with
the assumption that energy within these regions
is uniformly deliverable.9 It has been widely
asserted that deliverability is essential for ef-
fective hourly-matching10,11. However, PJM,
specified as one of these DOE regions, has 27
defined deliverability areas within the ISO that
are used for reliability planning.12

There are currently ongoing policy decisions
being made today to revise the greenhouse gas
protocol13 and define a hydrogen production
tax credit (PTC)9 that are based on this unre-
alistic assumption that congestion within grid-
regions is minimal and has negligible effects. In
a recent letter14, legislators expressed concern
over the possibility of the hydrogen PTC poten-
tially increasing overall emissions. Thus, it is
clear that understanding the impact of ignoring
intra-region congestion and generally assessing
the efficacy of these carbon accounting frame-
works is of pressing concern.
In this work, we demonstrate the frequency

and impact of intra-regional congestion on de-

liverability of renewable generation in ERCOT
and PJM, which coincide with the ‘Texas’ and
‘Mid-Atlantic’ geographic regions as defined by
the DOE National Transmission Needs Study8.
This paper aims to quantify the carbon impact
of transmission congestion in these regions us-
ing congestion-aware locational marginal emis-
sions (LME) data, and examine how congestion
impacts the effectiveness of various emissions
policies and accounting frameworks.

Use of operational emissions im-
pact

In this work, we look solely at operational emis-
sions impact which estimates the change in
emissions due to a change in operation, and
not due to a change to built capacity15. This
is also often referred to as the short-run emis-
sions impact. We use this as the key met-
ric for several reasons. First, there have been
various efforts to validate operational emission
factors15–19; the ERCOT marginal emissions
data used in this paper are one such validated
dataset16. On the other hand, there are not yet
clear methods for validating the long-run ‘build
impact’ of an action.15 Predictions of build im-
pact vary widely in different studies and are
typically based on capacity-expansion model re-
sults which depend heavily on model setup and
forecast assumptions20.
Additionally, the total carbon impact of an

action is the sum of the operational and build
impact emissions.15 We focus on examining
just the magnitude and variation of operating
impact as an important component in over-
all emissions impact and independent from the
value of build impact. Understanding when
there is meaningful variation in operational im-
pact driven by congestion and error in its ac-
counting methodology is vital to understand in
policy design. Furthermore, as the magnitude
of variation in the operating impact gets large,
it is likely significant relative to both these com-
ponents of impact, not just operating impact.
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What is Congestion?

Transmission congestion refers to restrictions in
the transmission network, limiting the flow of
power uniformly across a grid. Such restric-
tions occur when transmission lines reach their
maximum allowed power flow, preventing any
additional increase in flow. The grid must then
compensate by dispatching additional, higher
cost generators that can deliver power to the
necessary locations on the grid by way of other,
unconstrained transmission lines.
Thus, transmission congestion and line losses

contribute towards increasing the system wide
cost of supplying electricity to the grid by forc-
ing a change in generator dispatch. Both ER-
COT and PJM have seen rising system costs
associated with congestion, as shown in Figure
2(a). Congestion costs accounted for 8.3% and
2.2% of total system energy costs in 2023 in
ERCOT and PJM, respectively.
The system costs of congestion and losses

are reflected in how the market sets Locational
Marginal Price (LMP). LMP is comprised of
three parts to account for these contributing
factors:

• LMPe: energy component of LMP, repre-
senting the system-wide marginal energy
production cost

• LMPl: loss component of LMP, repre-
senting the cost to produce excess energy
required to compensate for system losses

• LMPc: congestion component of LMP,
representing the added energy produc-
tion cost incurred due to the management
of congestion constraints while delivering
the required energy to all locations on the
grid

The LMP, as constructed by the system opera-
tor, is the sum of these three components:

LMP = LMPe + LMPl + LMPc (1)

noting, however, that ERCOT does not con-
struct a loss component, so LMPl is set to
$0/MWh for all ERCOT prices21. When there
is no transmission congestion in a grid, the

least-cost set of generators are able to be dis-
patched to meet load and the congestion com-
ponent of LMP is zero everywhere. Under these
conditions, LMPs are roughly uniform across
the grid aside from losses.
Congestion and losses play a similarly impor-

tant role in determining LMEs. The effects of
congestion and losses are not simply an eco-
nomic construct, but are a reflection of a change
to how much power each generator is providing
to meet load in a specific location and time.
Thus, they directly impact the emissions pro-
duced by the grid to provide that power. LME
can therefore be defined by an analogous equa-
tion to LMP:

LME = LMEe + LMEl + LMEc (2)

where LMEe, LMEl, and LMEc are the en-
ergy, loss, and congestion components of LME.
Each component of LME has a similar formu-

lation to each LMP component for some node i
at a specific time interval, as follows:

LMPe,i = λ, LMEe,i = λc (3a)

LMPl,i = ℓλ, LMEl,i = ℓλc (3b)

LMPc,i =
∑
j

ψi,j · µj, LMEc,i =
∑
j

ψi,j · µc
j

(3c)

where λ and λc are the system energy cost and
system energy emissions intensity, respectively,
ℓ is the loss factor, ψi,j is the shift factor for
constraint j for node i, and µj and µc

j are the
shadow price and shadow carbon intensity for
constraint j, respectively. Just as a constraint’s
shadow price is the system-wide cost saving as-
sociated with a one mega-watt increase in the
line limit, the shadow carbon intensity is the
system-wide carbon emissions reduction associ-
ated with a one mega-watt increase in the con-
straint limit.

Illustrative example

We first illustrate the impact of transmission
congestion on both marginal and total emis-
sions in the system using a three-node exam-
ple, as depicted in Figure 1(a). This example
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Figure 1: A 3-node example, with the incremental cost, maximum power output and marginal
emissions rates for every generator, inspecting the effect of transmission constraints on the marginal
systems emissions.

features one fossil generator at node 1, one re-
newable generator at node 2, and the load at
node 3 co-located with another fossil genera-
tor. We assume that all lines have the same
impedance, line 2-3 has a maximum flow ca-
pacity of 100 MW and lines 1-3 and 1-2 have
infinite flow capacity. We also assume that, in
accordance with the current practice, the sys-
tem is dispatched in the least-cost manner (i.e.,
the total production cost is minimized, under
the assumption of inelastic demand) and renew-
able power generation is a must-take resource.
For the sake of clarity of our illustration, we
make multiple simplifications and avoid model-
ing some dispatch constraints, including on/off
commitment decisions, initial and end-of-day
conditions, multi-period constraints, ramp lim-
its, etc. We also simplify multi-piece cost pro-
duction and emissions characteristics of gener-
ators to single-valued functions.
To show the effect of transmission conges-

tion, we examine a scenario for this example
of a perfectly known and fixed value of load
L3 = 175 MW, which is an intermediate load
value for the system in Figure 1(a). First, if
the the given flow capacity limits are ignored,
i.e. copper-plate transmission, the resulting dis-
patch for G1, G2, and G3 is 25, 150, and 0
MW, respectively, which incurs 1250 kg/h of
total emissions and the system marginal emis-
sion is at 50 kg/MWh (G1 is marginal). How-

ever, this dispatch results in flow over line 2-3
of about 108.3 MW, violating the line’s flow
limit of 100 MW. Thus, to respect the given
flow constraints, instead G3 needs to ramp up
to meet load at node 1 above 150 MW with-
out flowing additional power over line 2-3, and
the least-cost dispatch for G1, G2, and G3 is 0,
150, and 25 MW, respectively, and the flow in
line 2-3 is exactly at the limit (100 MW). This
dispatch results in the total emissions of 5000
kg/h. Hence, the flow capacity limit leads to
different dispatches of the available generation
capacity, which in turn changes both the total
and marginal emissions.
Next, to illustrate the change in system

marginal emissions, under different demand lev-
els, we consider the least-cost dispatch for a
range of given, perfectly known and fixed val-
ues of load L3 in Figure 1(b). Our goal is to
demonstrate how changes in the load at node
3 affect both marginal and total emissions due
to congestion on line 2-3. First, we analyze the
case without congestion, i.e., the maximum flow
capacity on line 2-3 is ignored. In this case,
the marginal emissions are 0 kg CO2/MWh up
to L3 = 150 MW, rising to 50 kgCO2/MWh
when G2 is fully dispatched and G1 is acti-
vated to meet loads up to L3 = 200 MW, and
then jumps to 200 kgCO2/MWh when G3 fi-
nally turns on. Compared to the congested line
case in Figure 1(b), the main difference is that
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the maximum flow capacity of 100 MW on line
2-3 prevents G2 from turning on after L3 ex-
ceeds 150 MW and requires usage of G3, which
is more expensive and has a larger marginal
emissions rate. We also note that the least-cost
dispatch in the congested case leads to greater
total emissions than in the uncongested case.
We note that the simplifications made in

this illustrative example tend to underestimate
distortions between the uncongested and con-
gested cases, as further discussed in the studies
below which are based on real-world settings.
Reversing these simplifications and scaling the
experiments to a realistically large network ob-
structs flow-based analysis and requires indirect
inference.

Methods

Locational Marginal Emissions es-
timation

We calculate nodal LME values and the sub-
components at 5 minute resolution for all nodes
in ERCOT and PJM for 2018 to 2024. We
aggregate to hourly LME data by averaging
the sub-hourly LMEs to align the temporal
resolution with the generation data, enabling
all analysis to be performed using hourly-
resolution data. The LME data is available
from REsurety, Inc. at api.resurety.com.22 a

We calculate LME and the components us-
ing equations 2 and 3, which are represented in
matrix notation as:

LME =A

[
λc

µc

]
where A =

[
(1+ l)n ΨT

] (4)

where µc is a vector of shadow carbon intensities
of transmission constraints and Ψ′ is an n x m
shift-factor matrix.23

The method we use for calculating LMEs is
different in PJM and ERCOT due to the avail-
ability of data provided by the two different

aAcademic researchers and institutions can request
free access to LME data through this API by contacting
carbon@resurety.com

ISOs. The following sections detail the specifics
involved in calculating LMEs in each ISO.

PJM LMEs

PJM publishes LME data directly, however
they only provide nodal LME values for load
nodes, which is insufficient for the analysis in
the paper looking at the impact on renewable
generation. We extrapolate this data by taking
advantage of the formulation of LME in equa-
tion (4), and solve for system energy carbon
intensity and constraint shadow carbon inten-
sities, as [

λc

µc

]
= LME′/A′ (5)

where the prime denotes that the object is lim-
ited to the subset of nodes for which PJM pub-
lishes LMEs. With the shadow carbon inten-
sities computed for all binding constraints in
each interval, we can then directly calculate
LMEs and the components for all nodes us-
ing equations (4) and (2). We additionally ap-
ply some quality filtering of the data to re-
move time intervals when LMEs have unreal-
istically large magnitude or the above solution
is ill-conditioned. The fraction of data being
removed due to these filters is very small.

ERCOT LMEs

We calculate LME values in ERCOT using a
nodal dispatch model that uses the generator
data, offers, system shift factors, nodal LMP,
and constraint shadow prices published by ER-
COT. We use that data to first marginal gen-
erators based on offers and LMP for each time-
interval. We then estimate the marginal change
in dispatch of those marginal generators that
would be required to meet incremental change
in load at each node. This is done by solv-
ing for least cost energy while both (1) main-
taining the balance of energy and load, and
(2) holding the flow over non-violated binding
transmission constraints fixed, such that those
constraints are not violated. Once we have es-
timated the marginal change to dispatch, the
LME is calculated by scaling the change in
generator dispatch by the generator emissions
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rate. The generator emissions rates are esti-
mated from Energy Information Agency (EIA)
reported fuel type, fuel consumption, and net
generation data published in the EIA-923 re-
port24, along with the EPA fuel-specific emis-
sions data25. These LME estimates have been
validated in a study comparing marginal emis-
sions datasets, in which it was found to be the
most accurate dataset.16

Wind and Solar Generation

We use hourly wind and solar data for opera-
tional projects to calculate avoided emissions of
all existing projects within ERCOT and PJM.
ERCOT publishes the 60-day SCED Genera-
tion Resource26, which includes hourly oper-
ational ’base point’ generation data, as well
as the generation High-Sustained Limit (HSL)
which indicates the hourly potential wind and
solar generation, ignoring curtailment.
PJM does not publish hourly generation data

at the individual project level. We instead
model the wind and solar generation using gen-
eration models developed by REsurety, Inc.
The wind model uses MERRA-2 wind speed,
wind direction, and temperature data27 as the
meteorological input data and uses site-specific
hub heights and power curves to model wind
generation. Observed monthly generation from
EIA24 as well as hourly wind speeds from
REsurety’s proprietary internal database are
used to bias correct the modeled generation
output. The solar generation model uses high-
resolution solar irradiance data from an exter-
nal vendor as an input to pvlib28, an open-
source package for modeling solar PV out-
put. The operational project characteristics are
based on the EIA 860 report29.

Quantifying Emissions Impact

After the LME and generation data have been
obtained, we can then use the LME data to cal-
culate the immediate emissions impact of a spe-
cific renewable project’s generation. An incre-
mental change to generation or load at a node
on the grid results in an equivalent change in
the dispatch of the marginal generators. This

produces a change in emissions equal to the
nodal marginal emissions rate scaled by the
magnitude of the change. We thus estimate
the impact of the generation of a wind or so-
lar project at node i as the LMEi scaled by the
project generation, Gi, for each time interval t,
such that the total avoided emissions is calcu-
lated as:15,30

Avoided Emissions =
∑
t

LMEi(t) ·Gi(t) (6)

Similarly, the induced emissions from a load at
node j of magnitude Lj is calculated as:

Induced Emissions =
∑
t

LMEj(t) · Lj(t) (7)

The difference between the induced emissions
from load and the avoided emissions from pro-
cured renewable generation yields the net emis-
sions.

Results

Emissions Impact of Congestion

First, we quantify the overall impact that trans-
mission congestion has had on system-wide car-
bon emissions. We calculate the annual ‘conges-
tion carbon-rent’ for ERCOT for 2019 to 2023
in Figure 2(b), in both tonnes of CO2 and as a
percentage of total ERCOT emissions. Analo-
gous to the economic metric ‘congestion rent’,
the congestion carbon-rent represents the total
increase in emissions due to transmission con-
gestion across the ISO, calculated as the sum of
the shadow carbon intensity of each constraint
times the flow over the constraint. This is only
calculated for ERCOT as the constraint flows
are not publicly available for PJM.
We see that transmission congestion creates

a significant system-wide increase in emissions,
and the impact has grown over time, nearly
doubling from 2019 to 2022. This suggests that
if congestion were alleviated, ERCOT emissions
could drop by on the order of a ten-million
tonnes CO2. This metric is not a perfect repre-
sentation of the exact drop in carbon emissions,
however it is indicative of the scale and trend
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of the problem introduced by congestion and
the potential opportunity for carbon reduction
through reducing the frequency and severity of
congestion.
These results demonstrate the significant de-

gree of transmission congestion in ERCOT and
the emissions impact of that congestion. In the
following section, we discuss the implications of
ignoring that transmission congestion when de-
signing policy around decarbonization.

(a) Reported ISO-wide congestion rent

(b) Calculated ISO-wide congestion carbon-rent, analo-
gous to congestion rent but emission rather than cost

Figure 2: Annual system-wide (a) congestion
rent, as reported by the Market Monitor re-
ports6,7,31–33, and (b) congestion carbon-rent.

Sub-regional Variation in Emis-
sions Impact

Next, we explore the spatial LME variation
driven by congestion across ERCOT and PJM.
Figure 3 shows contour maps of the average
county LME for 2023 for both ERCOT and
PJM. LMEs are mapped onto counties by using
generator price node and county data. Coun-
ties that do not have at least one generator with
a known node associated are filled with the as-
sociated hub-level aggregate LME data. Any
missing LME values in the plot are due to in-
sufficient data to map nodes to counties, not
due to incomplete nodal LME data.
These maps demonstrate the significant vari-

ation in marginal emissions rate within each
grid-region. In PJM we see that there is nearly
a 2x spread in LME across the region. As a re-
sult of this variation across the region, a wind
farm built in Virginia would have avoided 50%
more carbon than an equivalent wind farm in
northern Illinois. Similarly, the induced emis-
sions of a newly built load could be reduced by
hundreds of kg CO2/MWh by siting it in east-
ern Pennsylvania or New Jersey instead of Vir-
ginia.
Wind and solar interconnection queue data

for PJM and ERCOT are overlaid onto LME
contour map, showing the capacity of wind and
solar projects currently planned in each county.
We see that, despite the low average LME in
Northern Illinois and Western Hub in PJM and
the LME in West Texas and South Texas in
ERCOT, there is still a large proportion of re-
newables planned for these regions. More re-
newable generation build out in these regions,
without significant changes to load patterns or
substantial transmission upgrades, would most
likely further exacerbate congestion in these ar-
eas. Any additional renewable energy capacity
built in these areas will both add comparatively
little to emissions reduction and further sup-
press the emission impact of existing capacity.
Interconnection queues across US ISOs and

RTOs are dominated by wind, solar, storage,
and hybrid projects. In recent years, projects
have entered queues at faster rates than the
queues can be cleared by the ISOs, and the
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(a) ERCOT

(b) PJM

Figure 3: Contour map of 2023 average LME by county across (a) ERCOT and (b) PJM, with the
capacity of solar (left) and wind (right) in the current interconnection queue (grey circles) overlaid,
where the size of the circle represents the total capacity in the queue in that area. Queue capacities
for some neighboring counties were aggregated to reduce visual clutter. Incomplete coverage of
LME contour map is due to lack of geographic information to associate with nodal data, not due
to incomplete LME coverage.
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multi-year queue waiting times that now pre-
vail across ISO/RTOs often results in project
cancellations.34 Thus, providing a path to pri-
oritizing the construction projects that are ex-
pected to have the greatest carbon impact and
suffer the least from congestion could meaning-
fully expedite the decarbonization of the grid.

Deliverability Limitations

Many existing and proposed carbon accounting
methods, including both annual- and hourly-
matching, assume that energy produced any-
where within a grid-region will have an equal
and opposite emissions impact as a load con-
suming an equal amount of energy. This is only
true, however, when congestion does not im-
pede generation deliverability across the grid-
region11. The push toward hourly-matching fo-
cuses on high temporal granularity, with mini-
mal locational granularity, assuming perfect de-
liverability within grid-regions. Thus, a key
question to understanding the impact of conges-
tion in designing policy is determining how fre-
quently there are transmission constraints be-
tween renewable generation assets and load on
the grid, preventing clean power from being de-
livered to the load. There have been many pro-
posed ways to define ’deliverability’, for exam-
ple based on grid-region9, spatial proximity, or
difference in nodal LMP10,11. In this work, we
look at the difference in LME, as this directly
informs net emissions, rather than serving as a
proxy.
We consider the wind and solar generation

from all operating projects in ERCOT and PJM
over 2023. For these generators, we calculate
the difference in LME between a sample load
and the generator node, referred to as ’LME
basis’. Using these data, we calculate the total
quantity of generation that is produced at each
value of LME basis for various assumed load
locations, as shown in Figure 4. This is shown
for a generic load in four hubs in ERCOT and
five hubs in PJM, assuming the hub aggregate
hourly LME values for each of the loads. This
LME basis can be thought of as the net emis-
sions for hourly-matched generation and load,
i.e., when load is matched by an equal quantity

of clean generation in the same hour. A positive
value of LME basis implies that the emissions
produced by the load are greater than the emis-
sions being offset by clean generation, leading
to a net increase in emissions.
Tables 1a and 1b take a more granular look at

deliverability, showing the total percentage of
the wind and solar generation in ERCOT and
PJM, respectively, that is generated at a time
when the load LME is at least 10 kg CO2/MWh
greater than the nodal LME at the site of gen-
eration. Thinking of this metric in the frame-
work of matching load with renewable energy
generated in the same hour, this is the percent
of generation occurring in hours with greater
than 10 kg CO2/MWh net emissions such that
load emissions are not sufficiently offset by re-
newable generation. This same metric is also
shown broken down based on the location of
the wind and solar generators, to show the de-
liverability of different generation zones to dif-
ferent load zones within the same ISO. The
10 kgCO2/MWh threshold reflects the emis-
sion cutoff defined by the proposed ‘45V’
clean hydrogen production tax credit (PTC) of
0.45 kgCO2/kgH2

9: for an electrolyzer stack
efficiency of 50 kWh/kgH2 the 45V cutoff cor-
responds to 9 kg CO2/MWh, which we conser-
vatively round up to 10 kg CO2/MWh. In other
words, hydrogen electrolyzers are only eligible
for the full PTC if they emit less than 0.45 kg
of CO2 per kg of hydrogen produced, which is
roughly equivalent to a net emissions value of
10 kg CO2/MWh.
Figure 4(a) demonstrates that a very large

proportion of built renewable generation is
not deliverable to ERCOT load outside of
ERCOT West, such that the load and clean
generation produce net emissions of over
300 kgCO2/MWh. This is largely driven by
the high penetration of wind in West Texas
that is frequently heavily export-constrained,
meaning that there is excess wind power that
cannot be delivered to areas outside of ER-
COT West due to transmission constraints.
The peak around 500 kgCO2/MWh LME dif-
ferential coincides with the emissions rate of
gas generators in ERCOT and comprised of
times when LME is near zero at the site of
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(a) ERCOT (b) PJM

Figure 4: Percentage of total annual wind and solar generation in 2023 that is produced at a
particular LME differential, or ’basis’, between the point of generation and load, calculated as the
LME difference (LMEload − LMEgen). The load location is indicated by the line color, and in all
cases the load LME is assumed to be the hub-level LME for the specified load zone to represent a
generic load for the region. The data is binned with 20 kgCO2/MWh resolution.

the clean generation but gas is marginal for
most load. This often occurs during periods of
high, export-constrained renewable generation,
such that renewables are competing with other
renewables in the export-constrained area and
are unable to serve additional load. As a result,
load operating in these hours is being met by
gas generators ramping up, despite there being
large amounts of renewable energy generation
in the same grid-region and at the same time.
Overall, load in Houston has the greatest deliv-
erability challenges, with 49.6% of generation
across ERCOT being undeliverable to load in
Houston, and over half of the wind and solar
generation produced in both South and West
Texas are not able to meet Houston load. Note
that we don’t see complete deliverability of gen-
eration within the same zone as the load due
to intra-hub congestion. The exact intra-hub
deliverability is dependent on the specific node
where the load is located.
In contrast to ERCOT, PJM has a less pro-

nounced tail at extreme net emissions values
(Fig. 4(b)). However, we see that for the
generic loads in Dominion Hub, Eastern Hub,
Western Hub, and AEP-Dayton Hub, the peak
occurs when there is net-positive emissions and
the distributions are all skewed toward positive

LME differentials, showing a consistent trend
of deliverability limitations for renewable gen-
eration. Since nodal differences in LME within
a grid-region are driven by both congestion and
line losses (see eq.2), the LME basis is in part
due to losses. The slight positive value of the
distributions’ peaks is largely driven by small
LME differentials due to line losses, showing
that these losses are another relevant contrib-
utor to increasing the overall net emissions on
the grid and impacting the locational sensitiv-
ity of energy procurement. However, about 80%
of the renewable generation in PJM with over
10 kg CO2/MWh LME basis is driven by con-
gestion alone.
As shown in Table 1, more than half of all

wind and solar generation has limited transmis-
sion to supply load sited in any of the zones out-
side of Northern Illinois. This is driven by the
large amount of wind capacity built in Northern
Illinois, combined with MISO wind imports and
the relatively high proportion of nuclear power
in this area, which is both inflexible and non-
carbon emitting. Thus, there is excess wind
generation that needs to be exported to east-
ern areas in PJM where demand is higher in
order to be consumed. This results in signif-
icant transmission bottlenecks to deliver this
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clean power. Furthermore, Dominion hub has
the greatest deliverability limitations, with al-
most 70% of renewable power with limited de-
liverability to load in Dominion Hub. This is, in
part, due to the high load in Dominion Hub cre-
ated by the expansion of data centers located in
Virginia, thus making transmission infrastruc-
ture feeding this region heavily trafficked.
It should be noted that we use modeled gener-

ation in PJM that does not account for curtail-
ment. This likely means we are slightly overes-
timating the percentage of wind and solar gen-
eration that is ”undeliverable” in PJM since
curtailment primarily occurs due to export-
constraining transmission congestion, result-
ing in negative congestion components of both
LMP and LME. As a benchmark, we have cal-
culated these metrics for ERCOT using the
High-Sustained Limit (HSL) generation data
which does not include curtailment and should
be most comparable to the modeled generation
in PJM, shown in Supplemental Table 1. We
see only a few percentage points increase for
ERCOT, so assuming curtailment patterns are
roughly similar in PJM, this suggests the met-
rics calculated for PJM in Table 1(b) are likely
only a few percentage points inflated.
These results demonstrate that congestion-

driven differences in marginal emissions within
the same grid-region occur with high frequency
and are affecting a significant proportion of the
wind and solar generation produced in both
ERCOT and PJM. A blanket assumption of
deliverability within a single grid region is not
empirically defensible, and will result in signif-
icantly higher emissions in reality versus what
is assumed under a simplified deliverability as-
sumption.

Impact of Congestion on the Ef-
ficacy of Carbon Accounting Ap-
proaches

The previous section demonstrated that there
are significant intra-regional deliverability chal-
lenges in both ERCOT and PJM due to trans-
mission congestion. In this section, we quantify
the emissions implications on carbon account-

ing approaches that do not take intra-regional
congestion into account.
In an effort to increase investment in clean en-

ergy, government policies and carbon account-
ing frameworks have been developed to quan-
tify emission reductions achieved by individ-
ual organizations. Two dominant carbon ac-
counting strategies are annual energy-matching
and hourly energy-matching, the latter of which
has been proposed more recently as a solu-
tion to shortcomings of annual-matching. In
an annual energy-matching framework, the to-
tal annual quantity of load added to the grid
by a particular entity needs to be met by an
equal quantity of carbon-free generation. In an
hourly-matching framework, this requirement
for clean energy matching becomes more tem-
porally granular, specifying that load should
be met by an equal quantity of clean genera-
tion in each hour. However, the load and gen-
eration are simply required to be located in
the same grid-region, without consideration of
potential transmission limitations within that
grid-region. In the next two sections, we use
LMEs to examine the effectiveness and accu-
racy of hourly-matching and annual energy-
matching.

PJM Case Study: Virginia Data Center

Next we examine a generic data center in Vir-
ginia, using aggregate LME values for the Do-
minion hub to represent the load. Since hourly-
matching is a commonly discussed carbon ac-
counting framework3,5,9,35,36, we aim to use
marginal emissions data to examine its accu-
racy. ‘Carbon-free energy’ (CFE) is a common
metric used with an hourly-matching account-
ing framework37. This metric counts all load
that is hourly-matched with procured clean
generation as carbon-free, as well as a frac-
tion of any unmatched load, set by the per-
centage of carbon-free generation on the grid in
the given time interval. CFE, as a metric, also
mirrors the proposed hydrogen PTC emissions
requirement which similarly stipulates hourly-
matching and bases the emissions of unmatched
load on the average grid mix.9 We calculate the
percentage of CFE for a Dominion-based load
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Table 1: Percentage of total wind and solar generation from each specified generation zone that is
produced in hours with at least 10 kg CO2/MWh greater marginal emissions at load hub than at
generation site. Thinking of this in the framework of matching load with renewable energy generated
in the same hour, this is the percent of generation occurring in hours with greater than 10 kg/MWh
net emissions such that load emissions are not sufficiently offset by renewable generation.

(a) ERCOT

Loc. of Location of Wind & Solar Generation

Load Houston North South West All

Houston 19.6 33.7 52.9 51.1 49.6

North 24.6 20.5 51.1 46.7 45.2

South 15.1 28.3 44.8 47 44.5

West 16.9 12.2 38.9 21.7 24.6

(b) PJM

Loc. of Location of Wind & Solar Generation

Load AEP-Dayton Dominion Eastern N. Illinois Western All

AEP-Dayton 43.9 35 52.6 85.1 42.1 61

Dominion 66.8 40.4 58.5 86.1 63.6 69.4

Eastern 46 34.7 44.8 67.4 42.9 52.9

N. Illinois 11.6 21.7 38.8 46.8 23.2 32.6

Western 55.3 38.4 56.1 82 48.3 63.2

with procured clean generation from each op-
erational project in PJM, shown in Figure 5,
calculated as:

CFE =
∑

t min(Eload,t,Egen,t)+(Eload,t−min(Eload,t,Egen,t)×CFEgrid,t∑
t Eload,t

(8)
where CFEgrid is the fraction of carbon-free en-
ergy in the electricity grid mix and Eload,t and
Egen,t are the load and procured clean genera-
tion at time t.37

To assess the impact of congestion on the ac-
curacy of this metric at quantifying the actual
fraction of carbon-free energy, we calculate the
percentage of carbon-free energy using an LME-
based emissions-matching framework for com-
parison. The metric used, denoted as CFEc, is
the percentage of induced emissions that is off-
set by the avoided emissions of procured clean

generation, calculated as:

CFEc =
Avoided Emissions
Induced Emissions

=
∑

t Egen,t·LMEgen,t∑
t Eload,t·LMEload,t

(9)
For this analysis, we assume a flat load that
is 50% annually energy matched to generation
(i.e. annual clean energy produced by the wind
or solar project is half the annual load).
Figure 5 reveals that the hourly-matching

CFE metric which assuming perfect deliverabil-
ity over-inflates the percentage of ‘carbon-free’
hours by as much as 34%, absolute, and 100%,
relative, overestimation of how much the load’s
impact has been offset. The energy-based CFE
is greater than emissions-based CFEc for ev-
ery operating project in PJM. Of course, when
using an hourly-matching approach, procurers
of power would develop a portfolio of renew-
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able assets, rather than rely on a single project.
However this represents the impact each gen-
erator would have in a aggregated portfolio.
Generally, we see that for a given capacity of
renewable generation, the more the procured
renewable portfolio’s output aligns with load,
the more CFE is an overestimation of the true
‘carbon-free’ energy. In this case, the clean gen-
eration is used more ‘efficiently’ and exceeds
load less frequently. This is why the difference
between the energy-based CFE and emissions-
based CFEc is larger for wind than for solar, as
solar generation’s extreme diurnal profile does
not align well with a flat load.
We additionally find that CFE most dramati-

cally underestimates emissions when less renew-
able generation is procured; as the capacity is
scaled up relative to load, the gap between the
energy-based CFE and emissions-based CFEc

starts to collapse. This is because the clean gen-
eration starts to exceed load more frequently,
such that a larger fraction of clean generation
is not ‘counted’.
In Figure 6, we look at four selected projects

in PJM and calculate the net emissions for
the Dominion-based load with rigorous energy
hourly-matching through load shifting and an-
nual energy matching with flat load. We again
find that the wind and solar projects with min-
imal congestion to the load effectively offset
the load emissions and have zero net emissions.
However the Camp Grove Wind Farm in North-
ern Illinois and Frenchtown Solar in New Jer-
sey both fail to fully offset the load’s induced
emissions, resulting in significant net emissions
of 172 kgCO2/MWh and 109 kg CO2/MWh, re-
spectively, despite rigorous hourly-matching.
Frenchtown Solar and Camp Grove Wind only
meet the 10 kgCO2/MWh basis deliverability
threshold to the load 36% and 17% of hours,
respectively, which accounts for 35% and 10%
of their generation. In contrast, Desert Wind
and Grasshopper Solar are deliverable to the
load 81% and 82% of the time.
For both solar projects, we see that load-

shifting to track with generation actually re-
sults in an increase in the net emissions relative
to annual energy matching. This is driven by
the diurnal profile of the load LME, where op-

erating the load at night when there is no so-
lar generation induces less emissions than dur-
ing the day when the solar farm is generat-
ing power. Grasshopper Solar equally offsets
the load’s emissions with generation-tracking
hourly-matching since there is minimal conges-
tion between the solar project and load. How-
ever, while hourly-matching resulted in zero
net emissions, not hourly-matching and instead
having a flat load would have resulted in nega-
tive net emissions, such that the effort of hourly
matching actually increases the net emissions.

ERCOT Case Study: Houston Elec-
trolyzer

There has recently been significant interest
in investment in hydrogen electrolysis, largely
driven by the tax credits introduced as part of
the Inflation Reduction Act9. The current pro-
posed policy includes a PTC based on hourly-
matching, i.e., requiring that electricity load
be met by renewable energy generation that
is both in the same grid-region, as defined by
the Department of Energy8, and temporally
matched to load9. However, as demonstrated in
the previous sections, clean generation is often
not deliverable within a grid-region, meaning
that temporally matched load and generation
will not necessarily result in zero net emissions.
To explore the impact of congestion-driven

deliverability limitations, we quantify the emis-
sions impact a hypothetical hydrogen elec-
trolyzer located in Houston with stack efficiency
of 50 kWh/kgH2 would have had in 2023. We
use Houston for this example, as Houston is ex-
pected to be a major hub for hydrogen produc-
tion due to a combination of its infrastructure,
natural resources, and economic factors38.
First, we find the frequency of hours in 2023

for which the net emissions of hourly-matched
generation and load meets or is less than than
the threshold of 0.45 kgCO2/kgH2, shown in
Figure 7(a) for every operational wind and so-
lar project location in ERCOT. Figure 7(b)
shows the average net emissions per kilogram
of hydrogen production, produced with rigorous
hourly-matching to each wind and solar project.
For the purpose of this analysis, we assume the
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Figure 5: (a) Map of PJM operational wind (triangle) and solar (circle) projects, colored by the
differences in average percent of hourly-matched energy and hourly-matched emissions, as defined
in equation 9, for 2023 for a generic flat load in Dominion Hub in Virginia (starred). (b) Box plot
of project average percent of hourly-matched energy and hourly-matched emissions, broken down
by project type. The load and generation are scaled such that the total annual project generation
is 50% of the the total annual load.

load is fully flexible and follows renewable gen-
eration. This is a simplification of real opera-
tion, but represents optimal hourly matching.
While we focus on an electrolyzer in this case
study, this analysis applies to any load sited in
Houston.
We see a large variation in both the frac-

tion of ’green’ hours and average net emissions
across Texas. For wind and solar projects that
are further away from Houston and are behind
highly congested transmission constraints, like
in the West and South, we see the fraction of
hours that meet the ’green’ threshold is quite
low, around 60% and result in an average net
emissions rate of up to 10 kg CO2/kgH2, more
than 20 times higher than the 45V threshold.
Projects close to Houston, on the other hand,
have roughly zero net emissions and almost all
hours are deliverable to the load, such that
hour-matching is effective. This shows that,
without considering the siting of the renewable
generation and load and the patterns of trans-
mission constraints, hydrogen production could
qualify for the proposed PTC while inducing
significant emissions onto the grid in ERCOT.
The variation we see in average net emissions

between projects located very close together, as
seen in regions with significant congestion in the
West and South, is driven by differences in cur-
tailment rather than difference in congestion or
LME. Generation is typically curtailed during
periods of heavy congestion, causing LMEs to
be very low. This causes projects with more
curtailment to effectively under-weight those
periods of low LME since a lower fraction of
their generation is produced at times with very
low LME compared to neighboring uncurtailed
projects.
Performing a similar assessment to that done

for PJM in Figure 6 to examine these trends
more closely, we look at four example projects,
two wind and two solar, that could be used to
offset load in Houston, in Figure 8. South Plain
Wind and Lasso Solar both are impacted by
transmission constraints limiting their export of
power to the rest of Texas. We see, even with
rigorous hourly matching, the avoided emis-
sions are significantly less than the emissions in-
duced by the load in Houston during all months
for these two projects. Thus, the operation of
that load leads to a significant increase in emis-
sions on the grid, despite the seemingly rigor-
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Figure 6: (a) Monthly net emissions of hourly-matched (flexible load) Dominion data center or
other load, assuming procurement from 4 different renewable energy projects within PJM; (b) map
of PJM wind and solar projects locations and load (starred), (c) diurnal average of LME at each
project (solid) and load (dashed) (d) total 2023 net emissions for hourly-matched (variable load)
and energy matched (flat load).

ous offset when congestion and variation within
the grid-region are ignored as part of an hourly
matching framework.
On the other hand, hourly-matching is very

effective at minimizing net emissions when con-
gestion is minimal between the clean generation
and load, whether due to very close proximity
as in the case for Fort Bent Solar, or simply
not being impacted by a transmission bottle-
neck and at a site with similar LME values to
the load, like Anacacho Wind. For both of these
projects, the monthly and annual net emissions
are consistently close to zero.
We see that there is little difference in

the net emissions associated with generation-
based load shifting to achieve hourly-matching
compared with an energy-matched flat load.
For both solar projects, generation-based load-
shifting (i.e., hourly matching) increases the net
induced emissions, since the grid tends to be
’greener’ in the evening due to the high pene-
tration of wind in Texas, the diurnal shape of
wind generation, and lower ISO-wide demand.
Because the load is matching the diurnal so-
lar generation profile for the two solar projects,

the load induces emissions during times of day
when solar generation is high, which don’t cor-
respond to these ’greener’ evening periods.

Discussion

This paper demonstrates that in both ERCOT
and PJM, there is significant intra-regional con-
gestion, causing large differences in marginal
emissions rate at different locations within the
same grid-region. Meaningful intra-regional
congestion has been occurring frequently over
the past five years, and has been shown to have
a particularly large impact on renewable gen-
eration. This analysis suggests that assum-
ing equal emissions and perfect deliverability
within a grid-region misses a major factor in
determining the induced and avoided carbon
emissions of load and renewable generation.
Therefore, by ignoring these effects in any car-
bon accounting framework, we will continue to
misattribute carbon emissions and abatement
and allow for taking ‘credit’ for greater emis-
sions offset than what is reflective of reality.
This work demonstrates that a 100% rigor-
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Figure 7: Map of ERCOT operational wind (triangles) and solar (dots) projects in 2023. The star
indicates the location of the hypothetical hydrogen electrolyzer facility in Houston. The marker
colors indicate (a) the percentage of hours where the net emissions, given the LME basis between
generator and load, is below the 45V emissions cutoff, and (b) the average net emissions associated
with hydrogen electrolysis for a Houston facility that has procured renewable energy of the wind
or solar project indicated on the map, assuming variable load to achieve perfect hourly-matching.

Figure 8: (a) Monthly net emissions of hourly-matched (flexible load) Houston electrolyzer assuming
procurement from 4 different renewable energy projects within Texas; (b) Map of renewable project
locations and load (starred), (c) average diurnal values of nodal LME, (d) total 2023 net emissions
for hourly-matched (variable load) and energy matched (flat load). The black dashed line indicates
10 kg/MWh.

ous hourly-matched load, when not considering
deliverability or the local variation in marginal
emissions impact within a grid-region, will often
still result in significant net induced emissions

in both ERCOT and PJM. Similarly, poten-
tial new hydrogen production that would qual-
ify for the proposed hydrogen PTC could likely
meaningfully increase the net emissions on the
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grid, despite strictly abiding by the proposed
hourly-matching PTC requirements. Carbon
accounting frameworks that require a tight def-
inition of temporal matching (e.g., hourly) but
allow for a loose definition of deliverability (e.g.,
grid-regions) will result in increased costs of
operations, due to the need to load shift to
match CFE generation, while having limited
real world carbon benefit, as a result of intra-
regional transmission congestion that limits or
even reverses the benefits of temporal match-
ing.
The choice for where to site load and clean

generation within a given grid-region, alone,
can have a sizable effect on emissions, result-
ing in a change to carbon emissions on the or-
der of 10s to 100s of kg CO2/MWh. Building a
wind farm in Virginia is equivalent in avoided
emissions to building a wind farm in Northern
Illinois that has 50% more capacity. At a time
when we need to decarbonize the grid as quickly
as possible, it is vital to prioritize investment in
the construction of projects that will maximize
the carbon impact, and avoid suffering from or
exacerbating the effects of transmissions con-
gestion.
Decisions for renewable energy investment

and procurement are based around carbon ac-
counting frameworks or other relevant pol-
icy (e.g., hydrogen PTC). It therefore seems
less likely that carbon accounting frameworks
that ignore the emissions impacts of intra-
regional transmission would drive emissions-
sensitive procurement and investment demand
towards projects and strategies where the im-
pacts of congestion are lower. Not incentivizing
a buyer of clean power toward procuring en-
ergy to maximize emissions reduction and avoid
congestion-effects will most likely result in new
clean energy investment continuing to exacer-
bate existing problems as current trends con-
tinue, as we see from the location of wind and
solar projects in the current PJM and ERCOT
interconnection queues. We would expect this
to result in more extreme congestion, increased
curtailment of renewables, and a reduction in
the potential carbon impact of new and exist-
ing projects, unless there are other structural
changes on the grid.

Similarly, siting load in export-constrained
areas when possible has great potential system-
wide benefits to not only reduce carbon emis-
sions but alleviate existing strain on transmis-
sion. As transmission is built, some effects of
congestion will be mitigated. However the rate
of growth of renewables has and is expected
to continue to outpace investment in transmis-
sion. Neither ERCOT nor PJM had more than
500 circuit-miles of transmission on average per
year built or upgraded over the past 5 years.8 It
is estimated that, to mitigate congestion, trans-
mission would need to be built at a much faster
rate than this or than what is planned.8 This
suggests that even if transmission buildout is
prioritized, the rate of development is unlikely
to keep pace with renewable growth enough
to address worsening congestion, if trends con-
tinue. This is also a reason that static grid-
regions are flawed, since the behavior within
regions is dynamic and evolves with changes to
the grid.
This work focuses on operating emissions im-

pacts, and thus does not consider long-run
structural changes to the grid. For example, if
the growth of congestion limiting the export of
renewable generation continues, that would ex-
acerbate the problems highlighted in this study
in the near to medium term but could also sig-
nal that more transmission capacity is needed
in the long run. This signal could incentivize
policy reform and investment to expand the
transmission grid, mitigating some of the effects
of transmission congestion. A carbon account-
ing framework that accurately reflects the emis-
sions impacts of transmission congestion could
also induce additional transmission expansion.
These long-run effects are out of scope for this
study, but would be valuable to explore in fu-
ture work.

Conclusion

This work demonstrates the high frequency
of intra-regional transmission congestion and
the large effect of the emissions of renewable
generation. We see that nearly half of ER-
COT wind and solar generation and the ma-
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jority of PJM wind and solar generation is not
deliverable to much of the rest of the grid.
This results in large variation in the avoided
and induced emissions across the grid, causing
large discrepancies between the induced emis-
sions of a load and avoided emissions of pro-
cured renewable energy. Without accounting
for intra-regional congestion, carbon accounting
methods like hourly-matching or annual energy
matching, significantly underestimate the net
induced carbon emissions on the grid.
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